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The objective of this research is to propose the estimator of the population mean for
incomplete data by using information of simple linear relationship model in the data set. In
addition, the factorization of the likelihood function is created to derive the maximum
likelihood estimator for the population mean. The simulation study was conducted for 630
situations to compare the efficiency of the proposed estimator with the two population mean
estimators, namely pairwise deletion and Anderson estimators. In this study, two criteria—
bias and mean square error—of the performances for estimators are examined. It is found
that all percentage levels of missing data, the mean square error of the proposed estimator
tends to be lower than those of pairwise deletion and Anderson estimators for the large
correlation levels between two variables in the data set whatever the sample sizes will be,
especially for the large percentage level of missing data. However, for the small correlation
between two variables in the data set, the three estimators tend to have the same
performances in terms of both two criteria for all sample sizes and all percentage levels of

missing data.

1. Introduction

Missing data are frequently found in many fields of research
[1,2]. For example, some individuals may refuse to express any
attitude for some sensitive questions in an opinion survey. In an
experimental research, the experimental units may be leave or die
before the experiment is completed. In longitudinal study, the
monotone missing data pattern usually occurs. These missing data
problems lead to increase an inaccuracy of the inference about the
parameters in the population if the researchers ignore about the
missing value in the data set. In estimation of the population mean
for incomplete data set, imputation technique [3,4] is one of the
familiar methods that researchers used it to replace the missing
values with substituted values before estimate the population mean
by using standard methods. However, the variance of estimator for
this technique is underestimated and lead to the wrong inference
about the population mean [5-7]. Available cases analysis is
another technique that sample mean is used for estimation about
the population mean and sometimes this is called pairwise deletion
method. Moreover, this method will not suitable for the large
amount of missing values because it will give the biased estimator
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and its standard error will increase [5, 8]. Ignoring missing values
from the data set for inferential statistical analysis will affect the
reliability of the conclusion about parameter in the population as
the studied of [9-13]. Therefore, there are several researchers
proposed about the estimators of the population mean for
incomplete data set by considering only available cases analysis as
follows: the maximum likelihood estimators of parameters for a
bivariate normal distribution and case of some observations are
missing for one variable were studied by [14]. That is, the
factorization of likelihood function approach that proposed by [14]
has been mostly used to derive the estimators of parameters for
incomplete data set such as the studied of [15] and the research of
[16]. Furthermore, these studies were found that the estimators
derived by using likelihood function approach have a good
performance, especially for a small sample size. Therefore, the
proposed estimator of the population mean for incomplete dataset
was derived based on a factorization of the likelihood function and
using information of a simple linear relationship model in the data
set. Moreover, a simulation study was conducted 630 situations to
compare the efficiency of the proposed estimator with the two
estimators, namely pairwise deletion estimator and Anderson
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estimator. In this study, the efficiency comparison criteria are bias
and mean square error (MSE).

2. Materials and Methods

In this paper, the estimation methods of a population mean
for incomplete data set are studied for efficiency comparison as
follows:

2.1. Anderson Estimator

In 1957, the maximum likelihood estimators of the parameters
of a bivariate normal distribution for incomplete data set with one
variable was proposed by [14]. Suppose random variables ¥, and

Y, have the bivariate normal distribution with mean vector
2

. . 01 Op
(44, t,) and covariance matrix Z:{ 2} . Suppose r
o

12 %2
observations of Y] and ¥, are bivariate normally distributed with

2
. . o1 Op
mean vector (g, i,) and covariance matrix 2. = .In
Opp O3

addition, n— r observations of ¥, are normally distributed with

mean g4 and variance o7 . The data are shown in Figure 1.

s s Vies Vet -5 Vin
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Figure 1: Missing data pattern of the bivariate normal distribution

From data pattern in Figure 1, the likelihood function of vector
parameter 0 = (y, i1y, 07, 03, 01,) can be written in the

formula of equation (1).

L(Q*|Y0bs) = Hle (y1j|ﬂ1»0'12)ny2m 0By + B 0'22|1) (1)
j=1 j=1

p— and 02‘1 (1-pHo?.
o

where £, =1,

=B, b=

The maximum likelihood estimators of z, 0'1 , 622“, B, and p,

are as follows:

N _ 1< "2
H == —§ Yij» O1
nig

1< 2 ) s
— - — ’
= —Z(VU—M) 0'2\1 S2 = — 5
nig s

1

20y =0y =7%)

=1

z(ylj I
Z(Vu

and ,Bo = V- /?1)_’1’

-, 1¢ ., 1
where, s , Vo = _Zyzj s N = _zylj
r r
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1 . — 2 1 . — —
= —Z(Yzj _Y2)2 and s, = _Z(ylj =)0 —12) -
r'a ra

Moreover, the maximum likelihood estimators of x, and o) are

. A A - 2 _ A2 p2a2_ p O
given by [, =y, - —») and 65 = o5+ B 6y _ﬂlé__
2

respectively.
2.2. Pairwise Deletion Estimator

In this study, pairwise deletion estimator is the estimation of
the population mean for incomplete data set based on complete
data or available-cases analysis [5], even if the values for the same
individual on other variables are missing. Suppose three variables
Y,, Y, and Y; are trivariate normally distributed in the population

and n observations of Y, are completely observed for all
individuals, but Y, and ¥; are not completely observed for all
individuals or they have missing data occurrence. That is, r
observations of Y, are observed whereas n— r observations of ¥;

are observed. Available cases analysis for the population means
M, 1, and g can be written in the forms of equation (2).

Zy2J and fi; = —— Z V3j 2)

_] r+l

R 1< N
H = —ZYU s My =
nj:1

Under MCAR [5] of the missing data mechanism, pairwise
deletion method will yield consistent and unbiased estimators in a
large sample size [5].

2.3. The Proposed Estimator of the Population Mean for
Incomplete Data Set

In this section, the estimator of the population mean for
incomplete data set is proposed. This proposed estimator is derived
using the factorization of the likelihood function [5,14] and a
procedure of finding the usual maximum likelihood estimator is
applied. Suppose dependent variable Y is assumed to have the
linear relationship with independent variable X, and its

relationship model is given by equation (3).

i =0 tox;te;, Jj=L2,..,n 3)

where 6, andare random &, and , are unknown parameters o,

errors that have the normal distribution with mean 0 and variance
2 . Then the mean and variance of ¥, can be written as

E(Y1) =9, +0 X, = 4 and V(Yl) 0'1 , respectively. Further,
& can be written in the form of equation (4).

gj= nj—%-0x;, j=12..n 4)
Let Y,

u, and variance 63 . In addition, 7 observations of ¥, and ¥,
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2

2
o o
u=(8+6X,, ) and covariance matrix X = ! 2
a O 03

The n—r observations of ¥} are normally distributed with mean

0y + 96, X, and variance 012. The study data pattern is shown in

Figure 2.
Observations X, V4 Y,
1 X i Y
2 X2 Yo YV
r Xy Y Vo
r+l X1 Vel
n xln yln

Figure 2: Missing data pattern of the proposed study

Let E, be a random variable that have the relationship of ¥, and
X, in the form of E, = Y, -6,-5, X .
variables E, and Y, are bivariate normally distributed with mean

Then two random

. . o Op
vector ,u=(0, ,uz) and covariance matrix Z:[ 5 |-
O 0

Additionally, the missing data pattern of E; and Y, are shown in

Figure 3.
Observations E, Y,
1 & Y
2 &y I»
r E1p Yor
r+1 gl,rﬂ
n gln

Figure 3: Random error and missing data pattern of Y2

Lemma 1 Let E;=Y, -6,-6,X;, ¥ and Y, be the random
variables where 0,, 0, are unknown parameters and X, be

independent variable. Suppose E, and Y, are bivariate normally

distributed with mean vector u = (0, ,uz) and covariance matrix

O 2 O
=" | Then, ¥,|E = ¢ is normally distributed with
O1n O3
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- : 2 _ 2y 2
mean /4, = i, + 7,6 and variance o7 = (1-p")o; where

_ 2 _ POy
&=y —0,—0x ’-Qzu = (50,51,0'2“,1'12)and T2 = o
1

Proof Let E =Y, -6,-06,X, and Y, be bivariate normally

distributed with mean vector u = (0, ,uz) and covariance matrix

2

oy 0

)3 ={ ] ]22} . Then, the joint probability density function of
O 03

E, and Y, is given by equation (5).
S2(61,Y2:0,) =
2 2
1 [Ll] - 2{31}?2*#2} (yz#tz}
1 2(1- pz){ ol ol o2 o2
€ ®)
22\(1- p*)oic?

2
where —(1)<¢91 <o, —OO<y2 < oo and QZ‘I: (50,51,0-2“,‘[12) .

Moreover, the probability density function of E; is given by
equation (6).

2

_l(ﬂ]
L, 2o (6)
2710'12

file0) =

where —0 < g < and 6, = (&, 5,,07).
Hence, a conditional probability density function of Y, given
E, = & can be written as follows:

Ji2(61,Y2:61)
;0 =
S (ya €5 6) 1 (56))

IR S N 57 R ?
20— 2{[ ) J p["l]}
e 20-p%)
\27(1- p*)o3
- 2
{J’Z - K 7P72€1}
ol

1

1
J27(1-p*)o?

1

- 2, 2
2(1-
— - ¢ (I-p )Uz
1 2
————5 5l - m - ma)
B 2(1- p%)o5 ) _ po,
B 2 » T2 T T
\27(l—p7)o; g
1
-——{»n -
B 1 2051{ \ }
= e (7

where 11, = p1, +71,¢) and 0§u = (1—p2)o-§ .

From Equation (7), this is the probability density function of a
normal distribution with mean 5, = 1, +7),¢, and variance

cr%ll = (1-p*)o; . Therefore, a random variable Y, |E, =& is
normally distributed with mean s, = 4, +7;,¢ and variance

o-%ll = (1-p*)o; whereg = y,— 8 —x, and 7}, = %.
1
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Lemma 2 For j =1, 2, ..., r, the two random variables £;; and Y,

are assumed to have the bivariate normal distribution with a mean

2

2
. . oy Op
vector U = (0, ,uz) and covariance matrix 2. :{ . For
Op O3

Jj=r+1,r+2, .., n, the random variable Ej; is assumed to have

a normal distribution with a mean 0 and variance o where

E, =

i= {j—=06, -6 Xj;; & and & are unknown parameters and

X);be independent variable. Let I =[E,, Ey,... Ey, Yy, Yay... Yy, |

be a random vector. Then, the likelihood function of parameter
vector 8 = (50,51,0-12,0-5‘1 ,T)2) is denoted by equation (8).

L@|w) =

2
202 Z(yzj )
2)1J=1

®)

2\"5  207i=1
(27[01 ) e

2 2y, 2 _ P9 -
where oy = (1- p)o; andz), = et ;= Nj— % — 01X

Proof For j=1,2,..., r, the two random variables Ej; and Y, are
assumed to have a bivariate normal distribution with mean vector
2
o, 0
= (0, yz) and covariance matrix > = { ! 122} For
01 03
j=r+1,r+2, ..., n, the random variable E; is assumed to have

a normal distribution with a mean 0 and variance o .

Let w= [8“ Elg v E1y Va1 Yoo oo yZ,]’ be a vector of value for the

random vector W = [E” E,...E, Y, Yzz...YZr]'. Then, the
likelihood function of 8 = (50,51,012,cr§|1,112) can be written

as follows:

L@|w) = Hflz(guahy_n) H Si(g;:0)

j=r+l

= {Hfl(glj;gl)xle(yzj |51j;Q2|1)][ H f1(51j§Q1)J
j=1

Jj=r+l
= [T/ 00 1 fan (g 1 8153 6) €))
= j=1

From Lemma 1, the likelihood function L(@|w) in equation (9)
can be written as
L@ |w)
2
_l[glj] , 12 {y2J - M| }2
ol 11 1 . 2"2\1
j=1 ‘/27r0'22|1

14 I 27r0'l
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1 & 5 (AT 2
_722 o o 20_2 l()’2j /12\1)
i 2 21 /=
(27r0' ) 2e
211

Theorem 1 For j=1,2,..., r, the two random variables E;; and

Yzj are assumed to have a bivariate normal distribution with mean

2

2
. . o Op
vector = (0, ,uz) and covariance matrix . =|: . For
O 0O)

J=r+1,r+2,..,n, therandom variable E,; is assumed to have

a normal distribution with mean 0 and variance of where

Elj: Y

i—0 —9X);; 6, and ¢ are unknown parameters and
X);be independent variable. Let I =[E}, Ey,...Ey, Yy Yay... Yo, |

be a random vector. Then, the factorization maximum likelihood
estimator of y, is given in equation (10).

A — A=t
Hoproposed Y2 T Ti2€ (10)

n
lejylj —nx | 1
=1 = _ = _
W » N= _zylj > xl——ZXU
2 —\2 n = -y
lej —n(x)
=1

where 6, =

€ = W -9 —51x1j , 0=y —ox for, j=1,2,..,r

,
— 1 —
Zelijj —re ),
~ =l - _ 1
=N~

2 —1\2 ri=1 i=1
Zelj —r(e) ! ]
=1

Proof Let W = [E11 Ey. B Y 1. 1) ]' be a random vector.

From Lemma 2, we known that the likelihood function of
0= (50,51,012,63“ ,7T1) 1s denoted by equation (8). Then, the

log-likelihood function can be written in the form of equation

(11).
InL(@|w)

221J

Hap ) (11)

From Lemma 1, the random variable Y2|E1 =g is normally

= - gln(2ﬂalz) (272'62“)

2 Z(y2j

22\1]1

distributed with mean o =ty + T8 and variance
o
0'§|1 = (1—/)2)6% where g =y, -5, -6x; and 7}, = po_ 2
1

Then, the log-likelihood function as shown in equation (11) need
to maximize and achieve the maximum likelihood estimators of
U, 6y,0, and are as follows: 7,
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o 23;“}:

iln L@ |w) =
09, 650

= D 0= ndo =8 2%, =0 (12)
Jj=1 J=1
n
ilnL(Qh_v):i—% 12J =0
09, 96| 201 ‘A
a 1 n
= Nj— 6 — x5 =0
aé'llz 20_1 = 1( J J) :l
=Zx1jy1j—502x1j—512xfj =0 (13)
j=1 J=l j=l

Equation (12) is multiplied by lej , then it will give the form

j=1
in equation (14).

2
leijlj —né‘Olej—é'l{ZxU] =0 (14)
JER J=1 J=

Equation (13) is multiplied by n, then it will give the form in
equation (15).

anljylj—né'Olej—né'lelzj =0 (15)
= j=l =

Subtraction equation (14) from equation (15), then it will give the
form in equation (16).

2
nZ:xljy1j —né'lelzj —leijlj +51[Zx1j] =0 (16)
Jj=1 Jj=1 j=1  j=1 Jj=1

n n n n 2 n 2
That is,=0 anljylj —lej Zylj - an]j - lej 0,
= JEE j=1 J=1

Additionally, the value of &, that maximize the log-likelihood
function is denoted by

n n n
nzlxljylj _Z;xljzylj
_ = J=

= Jj=1 _
5 = S— or 0] =
n 2 n
ny x° — X,
J=1 J=1

Therefore, the maximum likelihood estimator of ¢, is given by

n
lej%j —nxp )
Jj=1

n

2 =2
lej —n(x)
j=1

n

lejYU —nxy;
A _ j:1
o=

n

2 =2
lej -n(x)
j=1

From equation (12), the form of this equation can be written as

- 13 -
for X, = —lej andy, =
1

1 n
;;}ﬁy

S

n n
no, = Zylj —(S]lej or Then, the maximum ., = ¥, -/
J=1 J=1

likelihood estimator of &, is given by &, =y, —6,%, -

WWwWw.astesj.com

From Lemma 1, we know that p, =, +7,& then the

maximum likelihood estimator of parameter 7;, can be derived

as follows:

594nuﬂw>— a{

e

12 Tn| 2oy 55
0 2
=— Z Vo= My — 1128 =0
a’[lz[ 20-22“ _I 1( ] /) jl

r r
2
:Zgljyzj—ﬂzzglj_ﬁzzglj =0 (17)
= = =

e = -2
Oty @Uz

Z(J’z, Hop )2} =0

2
20'2‘1 Jj=1

Z(J’2, Hy = 71251,)2}:0

_ 0
aﬂz 20—22\1 Jj=1

p
= Z}’z_/ —rih
=l

j=1

Equation (18) is multiplied by 251 ; » then it will give the form
=l
in equation (19).

o r r r 2
281.,-2;%_/—szsl_;—nz[ZeuJ =0 (19)
PR = =

Equation (17) is multiplied by r, then it will give the form in
equation (20).

rzgljyzl 7”#2281, rrlzzg = (20)

Subtractlon equatlon (19) from equation (20), then it will give the
form in equation (21).

2
r r r r r
2
rzglijj - ”lezglj - zgljzij + 17y, [251/} =0 (2D
= = PR =

Furthermore, the value of 7, that maximize the log-likelihood
function is denoted by

rzglijj - ZSIA/'Z)/ZJ'

_ Jj= J=1 —
le - or le -

iy

—r—
Zglijj —ré&ym
=1

—_.
2 — 2
Zglj -r(g;)
j=1

Therefore, the maximum likelihood estimator of 7, is given by

r
—
Zelijj —re ),

~ =1 — 1< — 1¢
Ty = Jr— V= _Zy2j and e, = —Zelj
2 —1\2 ri=1 I =1
> -r(@) j
j=1
€=y 0y — 01X J=L2.,r;
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r r
— —
, th&herefore p, =y, 7,8 . or ru, = Zy2j _TIZZglj
J=1 J=1

maximum likelihood estimator of parameter x4, is given by
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Figure 4: Biases of the three estimators for percentage of missing data equals
10 of each sample size

3. Results of a Simulation Study

The efficiency investigation of the proposed estimator and
comparison of its efficiency with the two estimators—Anderson
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and pairwise deletion estimators—are studied via the simulation
data. Moreover, these data are generated 630 situations and
repeated 50,000 times for each situation. In this section, the criteria
in terms of bias and mean square error are used for efficiency
comparison. The population data of random variables Y] and ¥,

are generated in the form of bivariate normal distribution with

mean vector 4 =(8—8X,, 4,) and covariance matrix

2
Y= o1 O
2
O 03
1n =10, Missing = 20%
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ool M
w -0.01
& =8
& -0.02
03+ 7711
SRR A A =l A I A I
Correlation Coefficient
0.02 1 =50, Missing = 20%
0.01 ¢
z 0.00 g ——8=8—5 e
& -0.01 1
o
e T T T A B Tl Bl B B - LT B )
Correlation Coefficient
0.02 g 1 =60, Missing = 20%
0.01 A
2 0.00 -
& -0.01
-0.02 T T T T T T T T T T T T T T T T T T 1
R - A =R A e
Correlation Coefficient
0.010 1n =70, Missing = 20%
0.005
.. 0.000 e
£ 0,005
M .0.010
o5+
R T T TR B Bsr B v B B R T T S B
Correlation Coefficient
0.010 4 1 =80, Missing = 20%
0.005 +
2 0.000 4 g
@ -0.005 =g—g
0.010 — T T T T T T T T T T T T T T T 1
R - Tt B T B BB BB A T B B T
Correlation Coefficient
0.005 1 =90, Missing = 20%
0.000
2 -0.005
& -0.010
B ST e e e L s s o e B L e s e e A
I A A B R A T T T W
Correlation Coefficient
0.010 4 n=100. Missing = 20%
0.005 4 .
2 0.000 7 =g
@ -0.005 - ¥
000 +—F7—7——7—F—7 77T T 7T 77T T T T
QAR QYT Mo =M TN g RS
Correlation Coefficient

-e-Proposed - Anderson —&-Pairwise

Figure 5: Biases of the three estimators for percentage of missing data equals

20 of each sample size
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proposed estimator tends to be no difference from those of pairwise
deletion and Anderson estimators for almost all sample sizes and
all levels of the correlation between two variables in the data set.
Moreover, some situations (e.g., n = 20, 30 and percentage of
missing data in the data set equals 30) and negative high
correlation between two variables, its bias tends to be smaller than
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M.0.02 % =
B R A E LT R TR
-9 9 T P 9 TS TG OSSOSO S S S O~
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002 ¥ oo —M-—p
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A .0.02 4
B P S
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Figure 6: Biases of the three estimators for percentage of missing data equals
30 of each sample size
In this study, the values of parameters are defined as follows:
8, =2,08 =3, 4, =5, 05 =9 and the correlations between Y,
and Y, are given by p=-1.0,-0.9,...,0,...,0.9,1.0 . Then, the

samples of size n = 10, 20, 30, ..., 100 are randomly taken from
these populations. Missing data mechanism in the form of MCAR
[5] for three levels—10%, 20% and 30%—are constructed from
each sample. The simulation results are shown in Figure 4 to
Figure 9. Figure 4 to Figure 6 show that when percentages of
missing data equal 10, 20 and 30 of each sample size, bias of the
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the bias of pairwise deletion and Anderson estimators.
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Figure 7: Mean square errors of the three estimators for percentage of missing

data equals 10 of each sample size
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Figure 8: Mean square errors of the three estimators for percentage of missing
data equals 20 of each sample size

When considering the performance of the proposed estimator
in term of mean square error in Figure 7, it is found that the mean
square error of the proposed estimator tends to be lower than those
of pairwise deletion and Anderson estimators for the large
correlation levels between two variables in the data set and all
sample sizes when the data have 10 % of missing data.
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Figure 9: Mean square errors of the three estimators for percentage of missing
data equals 30 of each sample size

For higher percentages of missing data of each sample sizes as
show in Figure 8 and Figure 9, the performance of the proposed
estimator in term of mean square error are similar to the case of the
small percentages of missing data as mention above. Additionally,
the mean square error of the proposed estimator tends to be
obviously lower than those of pairwise deletion and Anderson
estimators for the large correlation levels between two variables in
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the data set whatever the sample sizes will be. However, for the
small correlation levels between two variables in the data set, the
three estimators tend to have the same performances in terms of
both two criteria—bias and mean square error—for all sample
sizes and all percentage levels of missing data. This simulation
study is found that the mean square errors of three estimators tend
to be decrease when the sample size increases for all levels of the
correlations between two variables in the data set and all levels of
the percentages of missing data. In addition, the mean square error
of the proposed estimator tends to be lower than those of the two
estimators—pairwise deletion and Anderson estimators—for the
small sample sizes (e.g., n =10, 20, 30) and high correlations (e.g.,
p=-0.1,-09,-0.8, 0.8, 0.9, 1.0) between two variables in the data
set, especially the percentage of missing data is equal to 30.
However, the mean square errors of three estimators tend to have
a similar performances for the low correlations between two
variables in the data set and all levels of the percentages of missing
data.

4. Discussion

In this study, the simulation results show that pairwise deletion
estimator tends to be a biased estimator for the small sample sizes
as mention by [5,9]. Moreover, the maximum likelihood estimator
of the population average for incomplete data set is derived by
using factorization of the likelihood function approach [14] tends
to have a good performance for the large correlation levels between
two variables in the data set and small sample sizes. This conforms
to the studies of [14,16]. In addition, the maximum likelihood
estimation of the population mean for incomplete data set tends to
have a good efficiency for small sample sizes as the study of [7].
This discovery of the proposed estimator will benefit for some
applications in the real life data, especially nowadays it is the era
of big data analysis which has the large number of variables in data
set. Therefore, we should find the relationships of some attributes
in data set before estimating the average of the interested variables
for incomplete data analysis. Further, this proposed estimator will
lead to correct estimate as possible.

5. Conclusion

The proposed estimator of the population mean for incomplete
dataset was derived by using the linear relationship between some
variables in the data set and the factorization of likelihood
function [14] was created to derive the proposed maximum
likelihood estimator. Additionally, the investigation of this
proposed estimator was studied via the simulation data for 630
situations to compare the efficiency in terms of bias and mean
square error with two estimators, namely pairwise deletion and
Anderson estimators. It is found that the efficiency of the
proposed estimator tends to be better than those of two above
mention estimators, especially for case of the high percentages of
missing data and the strong linear correlation between two
variables (e.g., the degree of p close to -1 or 1) whatever the
sample size will be. However, for the small correlation between
two variables (e.g., the degree of p close to zero), the three
estimators tend to have the similar efficiencies for all sample sizes
and all percentage levels of missing data.
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